Electron Tunneling Rates in Respiratory Complex I Are Tuned for Efficient Energy Conversion**

نویسندگان

  • Simon de Vries
  • Katerina Dörner
  • Marc J F Strampraad
  • Thorsten Friedrich
چکیده

Respiratory complex I converts the free energy of ubiquinone reduction by NADH into a proton motive force, a redox reaction catalyzed by flavin mononucleotide(FMN) and a chain of seven iron-sulfur centers. Electron transfer rates between the centers were determined by ultrafast freeze-quenching and analysis by EPR and UV/Vis spectroscopy. The complex rapidly oxidizes three NADH molecules. The electron-tunneling rate between the most distant centers in the middle of the chain depends on the redox state of center N2 at the end of the chain, and is sixfold slower when N2 is reduced. The conformational changes that accompany reduction of N2 decrease the electronic coupling of the longest electron-tunneling step. The chain of iron-sulfur centers is not just a simple electron-conducting wire; it regulates the electron-tunneling rate synchronizing it with conformation-mediated proton pumping, enabling efficient energy conversion. Synchronization of rates is a principle means of enhancing the specificity of enzymatic reactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electron tunneling in respiratory complex I.

NADH:ubiquinone oxidoreductase (complex I) plays a central role in the respiratory electron transport chain by coupling the transfer of electrons from NADH to ubiquinone to the creation of the proton gradient across the membrane necessary for ATP synthesis. Here the atomistic details of electronic wiring of all Fe/S clusters in complex I are revealed by using the tunneling current theory and co...

متن کامل

Probing potential-tuned resonant tunneling through redox molecules with scanning tunneling microscopy.

We have studied electron transfer through redox molecules adsorbed on a conductive substrate with scanning tunneling microscopy (STM) in aqueous solution. By adjusting the substrate potential, the Fermi levels of the substrate and tip can be easily shifted relative to the energy levels of the molecules. Aligning the Fermi levels to an energy level, a nearly tenfold increase in the tunneling cur...

متن کامل

Interprotein electron transfer from cytochrome c2 to photosynthetic reaction center: tunneling across an aqueous interface.

Interprotein electron transfer (ET) reactions play an important role in biological energy conversion processes. One of these reactions, the ET between cytochrome c(2) (cyt) and reaction center from photosynthetic bacteria, is the focus of this theoretical study. The changes in the ET rate constant at fixed distances during the association process were calculated as the cyt moved from the electr...

متن کامل

Modeling and Simulation of a Molecular Single-Electron Transistor

In this paper, to understand the concept of coupling, molecule density of states that coupled to the metal electrodes will be explained then, based on this concept, a weak and strong coupling for the molecules attached to the metal electrodes will be described. Capacitance model is used to explore the connection of addition energy with the Electron affinity and the ionization energy of the mole...

متن کامل

Theory of proton-coupled electron transfer in energy conversion processes.

Proton-coupled electron transfer (PCET) reactions play an essential role in a broad range of energy conversion processes, including photosynthesis and respiration. These reactions also form the basis of many types of solar fuel cells and electrochemical devices. Recent advances in the theory of PCET enable the prediction of the impact of system properties on the reaction rates. These prediction...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2015